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Abstract

A fully-explicit, self-consistent algebraic expression for the Reynolds stress, which is the

exact solution to the Reynolds stress transport equation in the `weak equilibrium' limit for two-

dimensional mean ows for all linear and some quasi-linear pressure-strain models, is derived.

Current explicit algebraic Reynolds stress models derived by employing the `weak equilibrium'

assumption treat the production-to-dissipation (P=") ratio implicitly, resulting in an e�ective

viscosity that can be singular away from the equilibrium limit. In the present paper, the set of

simultaneous algebraic Reynolds stress equations are solved in the full non-linear form and the

eddy viscosity is found to be non-singular. Preliminary tests indicate that the model performs

adequately, even for three dimensional mean ow cases. Due to the explicit and non-singular

nature of the e�ective viscosity, this model should mitigate many of the di�culties encountered

in computing complex turbulent ows with the algebraic Reynolds stress models.
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Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23681-0001.
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1 Introduction

Since its advent, the algebraic Reynolds stress approach introduced by Rodi [1] has been viewed

as one of the most sophisticated closure strategy at the two-equation level of turbulence model-

ing. In this approach, the structural form of the Reynolds stress (uiuj) is taken to be self-similar

in space and time. That is, the anisotropy of the Reynolds stress (bij) de�ned as

bij =
uiuj

2K
� 1

3

�ij: (1)

is taken to be a constant:

dbij

dt
=

@bij

@t
+ Uk

@bij

@xk
� 0: (2)

In the above equations, repeated indices denote summation, Ui and ui represent the mean and

uctuating velocity �elds and K is the turbulent kinetic energy. The weak-equilibrium condition

(equation 2) is exact for homogeneous ows at equilibrium and a reasonable approximation for

slowly-evolving ows. However, it should be borne in mind that the model obtained invoking

this assumption will be used in inhomogeneous ows which may be far from equilibrium.

When the Reynolds stress transport equation is subject to this `weak-equilibrium' assump-

tion, a set of simultaneous non-linear algebraic equations is obtained. Rodi [1] proposed that this

set of non-linear equations for Reynolds stresses be solved numerically. The iterative numerical

solution of the set of algebraic equations can be computationally expensive, nullifying the ad-

vantage of a two-equation model over second-order closures. By presuming that the anisotropy

stress tensor has the form dictated by representation theory, Pope [2] obtains semi-explicit so-

lutions for the Reynolds stresses. In order to completely close the expression for the Reynolds

stresses, Pope's methodology requires the numerical solution of a single non-linear equation for

the production to dissipation ratio.

In an e�ort to obtain a completely explicit expression for the Reynolds stresses from the

set on non-linear equations, Taulbee [3] and Gatski and Speziale [4], linearize the problem by
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treating the production of kinetic energy (which is the main source of the non-linearity) as a

known quantity to be speci�ed. Again, using representation theory, explicit solutions to the set

of the now-linearized algebraic equations are obtained. This results in an e�ective viscosity that

is a function of the following:

�T = �T (
P

"
; Sij;Wij); (3)

where, " is the dissipation rate of kinetic energy, and Sij and Wij are the normalized strain and

rotation rate of the uid. This type of algebraic Reynolds stress model requires that P=" be

speci�ed externally: the ratio is typically set at its equilibrium value [4]. While the linearization

of the Reynolds stress equation about the equilibrium value of (P=") ratio is reasonable if the

ow is near equilibrium, the resulting model can be internally inconsistent when used away from

equilibrium. Consider the example of an arbitrary two-dimensional mean ow. Let [P="]eq be

the equilibrium value of the ratio used to calculate the turbulent viscosity. The production to

dissipation ratio implied by the model can then be calculated as follows:

[

P

"
]model =

�2uiujS�ij
"

=

2�TS
�

ijS
�

ij

"
= 2

S�ijS
�

ij

"
�T ([

P

"
]eq; Sij;Wij); (4)

where S�ij is the dimensional strain rate. For an arbitrary ow away from equilibrium, Sij and

Wij can be speci�ed without restriction: there is no guarantee that the production to dissipation

ratio calculated from the algebraic Reynolds stress model will be even close to the equilibrium

value assumed to calculate the turbulent viscosity.

The current algebraic Reynolds stress models are, therefore, either self-consistent but not

fully explicit (Rodi[1], Pope[2]) or explicit but not always self-consistent. The premise of this

brief paper is that an algebraic Reynolds stress closure model can be of practical value if and only

if the model expression is fully explicit, self-consistent and non-singular, and hence, computable

in situations away from equilibrium. Towards that end, an algebraic expression for Reynolds

stress which has all the above attributes is derived. It is also demonstrated that this expression

is indeed the exact solution to the two-dimensional mean ow Reynolds transport equation in
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the weak equilibrium limit for all linear and some quasi-linear pressure strain models. This

model can be very useful for the calculation of complex ows, especially in situations where the

Rodi [1] algebraic equations are still being solved numerically.

2 The non-linear algebraic Reynolds stress equations

The exact Reynolds stress transport equation in an arbitrary non-inertial reference frame un-

dergoing a rotation with angular velocity 
i is given by

@uiuj

@t
+ Ukuiuj ;k + 2
m(emkjuiuk + emkiujuk) + uiujuk;k = Pij + "ij + �ij +Dij ; (5)

where eijk is the alternating tensor. The terms, respectively, are the time rate of change, ad-

vection, Coriolis acceleration, turbulent transport, production (Pij), dissipation ("ij), pressure-

strain correlation (�ij) and pressure-viscous di�usion (Dij) of the Reynolds stress:

Pij = �uiuk
@Uj

@xk
� ujuk

@Ui

@xk
(6)

"ij = 2�
@ui

@xk

@uj

@xk

Dij =

@

@xl
[�pui�jl � puj�il + �

@uiuj

@xl
]:

The production and dissipation rate of turbulent kinetic energy are, respectively, P =
1
2
Pii,

and " = 1
2
"ii. The dissipation rate tensor can be split into its isotropic and deviatoric parts as

follows:

"ij =
2

3

"�ij + dij: (7)

The transport equation for the anisotropy tensor in non-dimensional time is derived from equa-

tion (5):

dbij

dt�
+ bij(

P

"
� 1) = �2

3

Sij � (bikSkj + Sikbkj �
2

3

bmnSmn�ij) (8)

�[bik(!jk + 2emkj

�

m) + bjk(!ik + 2emki

�

m)] +
1

2

�
�

ij:
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In the above equation the following normalizations have been e�ected using the eddy turnover

time:

dt� =

"

K
dt (9)

Sij =

1

2

K

"
(

@Ui

@xj
+

@Uj

@xi
)

!ij =

1

2

K

"
(

@Ui

@xj
� @Uj

@xi
)



�

m =

K

"

m

�
�

ij =

K

"
(�ij � dij):

It is easily seen that
P

"
= �2bmnSmn. We consider the following type of quasi-linear pressure-

strain model (that includes all linear models):

�
�

ij = �(C0
1 +C1

1

P

"
)bij +C2Sij +C3(bikSjk + bjkSik �

2

3

bmnSmn�ij) +C4(bikW
�

jk + bjkW
�

ik); (10)

where the C's are numerical constants and

W �

ij = !ij + emji

�

m: (11)

It can be shown that most of the pressure-correlation models ([5], [6], [7]) are special cases of

equation (10) near weak equilibrium. Substitution of equation (10) into equation (8) and invok-

ing the weak equilibrium condition leads to the following non-linear equation for the Reynolds

stresses:

bij[(C
0
1 � 2)� 2(C1

1 + 2)bmnSmn] = [C2 �
4

3

]Sij + [C3 � 2](bikSjk + bjkSik �
2

3

blmSlm�ij)(12)

+[C4 � 2](bikWjk + bjkWik):

In the above equation Wij represents the total normalized vorticity given by

Wij = !ij +
C4 � 4

C4 � 2

emji

�

m: (13)
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For the sake of clarity, de�ne the following:

L0
1 �

C0
1

2

� 1; L1
1 � C1

1 + 2; L2 �
C2

2

� 2

3

; (14)

L3 �
C3

2

� 1; L4 �
C4

2

� 1:

The non-linear algebraic Reynolds stress equation now takes the simple form

bij[L
0
1 � L1

1bmnSmn] = L2Sij + L3(bikSjk + bjkSik �
2

3

blmSlm�ij) + L4(bikWjk + bjkWik): (15)

These equations describe the �xed points of the dynamical system of equations representing the

transport of the anisotropy of the Reynolds stresses (equation 8).

3 Fully-explicit solution

At this stage, the present procedure departs from those in literature (e.g., Gatski and Speziale

[4]). Rather than treat the Reynolds stress term within the square brackets on the left hand

side (LHS) of equation (15) implicitly as has been done in the past, this term is now retained

in its explicit form. We now appeal to the representation theory for providing the most general

tensorial form of the anisotropy tensor in terms of the strain and rotation rate tensors. For

details of this, now routine, procedure the reader is referred to [2], [3] and [4]. For arbitrary

three-dimensional mean ows the full integrity basis is composed of ten tensors. The functional

form is too cumbersome to be of practical value [4]. It is customary to restrict consideration

to the more tractable case of two-dimensional mean ows and use the resultant functional form

of the Reynolds stress model expression for three-dimensional ows also. For two-dimensional

mean ows, the general representation of the anisotropy tensor is given by (see Gatski and

Speziale [4] for details):

bij = G1Sij +G2(SikWkj �WikSkj) +G3(SikSkj �
1

3

SmnSmn�ij); (16)

where, G1 � G3 are unknown coe�cients which are functions of the constants of the pressure-

strain model and the invariants of the strain and rotation rate tensors. In incompressible ows,
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these invariants are

�1 = SijSij; (17)

�2 = WijWij:

The objective now is to determine the unknown coe�cients by using equation (15) as the con-

straint.

Determination of model coe�cients. For two-dimensional mean ows, using equation

(16), it is easy to show that

bmnSmn = G1�1: (18)

Substitution of equations (16) and (18) into equation (15) yields after some manipulations

[G1Sij +G2(SikWkj �WikSkj) + G3(SikSkj �
1

3

SmnSmn)](L
0
1 � �1L

1
1G1) (19)

= [L2 +
�1

3

L3G3 + 2�2L4G2]Sij +

2L3G1(SikSkj �
1

3

SmnSmn�ij)�

L4G1(SikWkj �WikSkj):

Comparison of the coe�cients of the tensor Sij on either side of equation (19) leads to the

following constraint:

G1[L
0
1 � �1L

1
1G1] = L2 +

�1

3

L3G3 + 2�2L4G2: (20)

The coe�cients of (SikWkj �WikSkj) and (SikSkj � 1
3
SmnSmn�ij) yield:

G2 =
�L4G1

L1
0 � �1L

1
1G1

; G3 =
2L3G1

L1
0 � �1L

1
1G1

: (21)

The problem is now reduced to that of determining G1 alone. From equations (20) and (21) we

get the following cubic equation for G1:

G1(L
0
1 � �1L

1
1G1)

2
= L2(L

0
1 � �1L

1
1G1) + [

2

3

�1(L3)
2 � 2�2(L4)

2
]G1; (22)
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which can be rewritten in the following standard form:

(�1L
1
1)

2G3
1 � (2�1L

0
1L

1
1)G

2
1 + [(L0

1)
2
+ �1L

1
1L2 �

2

3

�1(L3)
2
+ 2�2(L4)

2
]G1 � L0

1L2 = 0: (23)

It is immediately apparent that the cubic equation degenerates into a linear equation when

�1 = 0 or L1
1 = 0. For these special cases G1 is given by

G1 =
L0
1L2

(L0
1)

2
+ 2�2(L4)

2
; when �1 = 0; (24)

and

G1 =
L0
1L2

(L0
1)

2
+ �1L

1
1L2 � 2

3
�1(L3)

2
+ 2�2(L4)

2
; when L1

1 = 0: (25)

General solution. For the general case, the calculation of G1 is not straightforward. This

is due to fact that the cubic equation can produce multiple real roots and the choice of the

appropriate solution may be di�cult to make. The proper choice among the possible roots of

equation (23) is necessary.

The solution to the cubic equation (23) can be calculated following the standard procedure

given in most mathematical handbooks. De�ne the following:

p � � 2L0
1

�1L
1
1

; r � � L0
1L2

(�1L
1
1)

2
; (26)

q � 1

(�1L
1
1)

2
[(L0

1)
2
+ �1L

1
1L2 �

2

3

�1(L3)
2
+ 2�2(L4)

2
];

a � (q � p3

3

); b � 1

27

(2p2 � 9pq + 27r):

The discriminant of the cubic equation can now be calculated:

D =

b2

4

+

a3

27

: (27)

If the discriminant is positive, the cubic equation (23) has one real and two complex roots. The

choice of G1 is obvious and we pick the real root:

G1 = �
p

3

+ (� b

2

+

p
D)

1

3 + (� b

2

�
p
D)

1

3 for D > 0: (28)

7



When the discriminant is negative equation (23) has three real roots given by

G
(1)
1 = �p

3

+ 2

s
�a
3

cos(
�

3

); (29)

G
(2)
1 = �p

3

+ 2

s
�a
3

cos(
�

3

+

2�

3

);

G
(3)
1 = �p

3

+ 2

s
�a
3

cos(
�

3

+

4�

3

):

In the above equations � is given by

cos(�) =
�b=2q
�a3=27

: (30)

The choice of which root to pick is now less obvious. We now need a selection criterion to

uniquely determine G1.

Selection criterion. The selection of an unique value of G1 is based on the following criterion.

Consider a calculation in which the discriminant D changes sign passing through zero. It is,

then, reasonable to require that G1 be a continuous function of D across D = 0. This requirement

translates into the following selection criterion:

lim
D!0+

G1 = lim
D!0�

G1: (31)

When the discriminant is nearly zero, we must have

a < 0; and

b2

4

=

�a3
27

; (32)

leading to

(

jbj
2

)

1

3 =

s
jaj
3

: (33)

We now need to consider two separate cases: when b > 0, and b < 0.

Case 1: b > 0. From equation (28) we have,

lim
D!0+

G1 = �
p

3

� 2[

jbj
2

]

1

3 = �p

3

� 2

s
jaj
3

: (34)
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From equation (30) we can infer the following:

cos(�) =
�jbj=2q
�a3=27

= �1; (35)

implying that � = �. Substitution of this into equation (29) yields the following:

G
(1)
1 = �p

3

+ 2

s
�a
3

cos(
�

3

) = �p

3

+

s
jaj
3

; (36)

G
(2)
1 = �p

3

+ 2

s
�a
3

cos(�) = �p

3

� 2

s
jaj
3

;

G
(3)
1 = �p

3

+ 2

s
�a
3

cos(
5�

3

) = �p

3

+

s
jaj
3

:

Therefore, the branch of the solution that will lead to G1 being continuous function of the

discriminant is G
(2)
1 .

Case 2: b < 0. For this case we have,

lim
D!0+

G1 = �
p

3

+ 2[

jbj
2

]

1

3 = �p

3

+ 2

s
jaj
3

: (37)

We get � = 0 since,

cos(�) =
jbj=2q
�a3=27

= 1: (38)

From equation (29) one obtains:

G
(1)
1 = �p

3

+ 2

s
�a
3

cos(0) = �p

3

+ 2

s
jaj
3

; (39)

G
(2)
1 = �p

3

+ 2

s
�a
3

cos(
2�

3

) = �p

3

�
s
jaj
3

;

G
(3)
1 = �p

3

+ 2

s
�a
3

cos(
5�

3

) = �p

3

+

s
jaj
3

:

The branch of the solution that is now picked is G
(1)
1 .

The choice of a unique value for G1 when multiple real roots are possible is based on the

requirement that G1 be a continuous function of the discriminant D in the neighborhood of
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D = 0. This is an important requirement, since, in the the course of computation with the

model, if D = 0 is encountered, there should be no discontinuity in the anisotropy tensor. It

can be shown that the discriminant D is positive when strain rate dominates over rotation rates

(�1 � �2). For example, in the plane strain case, D is always negative and D = 0 is never

encountered. In this case, the use of the above selection criterion is somewhat questionable.

Second selection criterion. For the case when D is always negative, we employ a second

selection criterion. We will require that G1 cannot not be always positive. A positive value of

G1 would correspond to a negative value for turbulent kinetic energy production since P �

�G1SijSij. In a homogeneous turbulence calculation, a negative value of production (which

represents energy transfer from chaotic small scales to organized large scales) at all times would

constitute a violation of the second law of thermodynamics. Furthermore, if G1 is always

positive, the model will predict only positive values for the the turbulent shear stresses in

the case of plane strain ow. It is well known from direct numerical simulations that the

equilibrium value of turbulent shear stress in a plane strain case is negative. Therefore, if G1

is always positive, one cannot have a viable equilibrium turbulence state. In Figure 1, we plot

the behavior of the three real roots given in equation (29) over a very wide range of �1 and �2

values for the case D < 0. It is clear from the �gure that G
(1)
1 and G(3)

are always positive and

G(2)
is always negative. (It turns out that when D < 0, b is always positive.) Therefore, the

only physically viable root is G
(2)
1 .

The behavior of the multiple roots given in Figure 1 is for the Speziale et al. [7] pressure-

strain correlation model. Similar behavior is also observed for the pressure-strain correlation

models of Launder et al. [5] and Gibson and Launder [6] (�gures not shown).
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Model for G1. The fully explicit expression for G1 can now be summarized as follows:

G1 =

8>>>>>>><
>>>>>>>:

L0
1L2=[(L

0
1)

2
+ 2�2(L4)

2
]; for �1 = 0;

L0
1L2=[(L

0
1)

2
+ �1L

1
1L2 � 2

3
�1(L3)

2
+ 2�2(L4)

2
] for L1 = 0;

�p

3
+ (� b

2
+

p
D)

1

3 + (� b

2
�
p
D)

1

3 ; for D > 0;

�p

3
+ 2

q
�a
3
cos( �

3
); for D < 0 and b < 0;

�p

3
+ 2

q
�a

3
cos( �

3
+

2�
3
); for D < 0 and b > 0

(40)

The other two coe�cients G2 and G3 can again be easily calculated from equation (21).

In �gure 2, the coe�cient G1 given by equation (40) is plotted as a function of �1 for various

values of �2. Figures 3 and 4, provide similar plots for G2 and G3. It is clear from the plots that

these coe�cients and, therefore, the e�ective turbulent viscosity is non-singular.

4 Model veri�cation

In this Section, we �rst provide an explicit demonstration that the derived expression is indeed

the exact solution to the set of non-linear algebraic equations (15). Then we compare the equi-

librium anisotropy predicted by the new model to that calculated from the Reynolds averaged

Navier-Stokes calculations.

4.1 Comparison with exact solution

The basic objective of most algebraic Reynolds stress modeling procedures is to �nd an explicit

solution to the set of simultaneous non-linear equations given by equation (15). In some simple

cases, the solution to the set of equations can be directly obtained without resorting to the

representation theory. For homogeneous shear, one can compare the model Reynolds stresses

to those calculated directly. Any deviation of the explicit model results from the direct solution

even if former compares better with experimental data is undesirable, for the modeling procedure

can claim no extra source of physics.

Consider the case when the mean velocity gradient �eld is given by

@Ui

@xj
= S��i1�j2 (41)
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The set of non-linear equations for the Reynolds stress (15) simpli�es to

b312 = � 2L0
1

SL1
1

b212 �
b12

2(L1
1)

2
[2

(L0
1)

2

S2
+

L1
1L2

S
R (42)

�(L3

3

+ L4)(L3 � L4)� (

L3

3

� L4)(L3 + L4)] +
L0
1L2

2S(L1
1)

2

b11 = b12S
L

3
+ L4

L0
1 � b12SL

1
1

b22 = b12S
L

3
� L4

L0
1 � b12SL

1
1

:

In �gure 5, the various components of the anisotropy tensor calculated directly from solving

the above equation are compared against those computed from the explicit algebraic Reynolds

stress derived in the previous section. As can be seen, the results are indistinguishable for all

values of the strain rate ratio S.

4.2 Comparison of equilibrium anisotropy

Any algebraic model, at the very least should be able to calculate the equilibrium state of

anisotropy of various basic homogeneous ows. For two-dimensional homogeneous ows, this

comparison is more a test of the pressure-strain model rather than of the algebraic stress model-

ing methodology. Clearly, the model performance will depend upon the choice of pressure-strain

model: we select the model of Speziale et al [6]. The algebraic Reynolds stress model (ARSM)

is compared against the Reynolds averaged Navier-Stokes (RANS) calculations of Speziale et al

[7], and the experimental data of Tavoularis and Corrsin [8] for the case of homogeneous shear.

The results are given in Table 1. The model agrees very well with data. In fact, the present

ARSM prediction is identical with the ARSM calculations of Gatski and Speziale [4]. This is

not surprising, since, the two ARSM models should indeed be identical in the equilibrium limit.

However, they are very di�erent away from equilibrium, the present model being self-consistent

and non-singular.
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We also perform comparison between the present ARSM and RANS calculations of Speziale

et al [7] for the case of plane-strain (two-dimensional mean ow), and axisymmetric contraction

and expansion (three-dimensional mean ows): the equilibrium values are given in Table 1. As

is to be expected, the ARSM and RANS values are quite close for the case of plane-strain. In

this case, the di�erence between the two is due to the fact that the RANS calculation employs

the full non-linear pressure strain model, whereas, only the quasi-linear pressure-strain model

is built into the ARSM. The good agreement between the two models in the case of three-

dimensional ows is more surprising. Recall that the ARSM procedure uses an integrity basis

that is complete only for two-dimensional ows. In the case of axisymmetric contraction, the

equilibrium values of anisotropy predicted by the two models are extremely close. For the case of

axisymmetric expansion, the agreement is not as good, but quite satisfactory. (In the algebraic

model calculations, the value of the parameter SK=" is taken from that of the full Reynolds

stress model calculations.)

5 Summary and Conclusions

In this brief paper, we derive the exact solution to the Reynolds stress transport equation in

the weak-equilibrium limit for two-dimensional mean ows for all linear and some quasi-linear

pressure-strain correlation models. This �xed point analysis of the Reynolds stress transport

equation produces three roots. When the discriminant of the cubic �xed point equation is

positive, two of the roots are complex and one is real. In this case, the real root clearly is the

physically realistic �xed point of the Reynolds stress transport equation. When the discriminant

of the �xed point equation is negative (as it happens to be for the plane strain case), all of the

three roots are real. Two of the real roots lead to a negative value of turbulent viscosity and,

hence, may be unphysical. The only root that leads to a positive value of turbulent viscosity also

produces the equilibrium values of anisotropy that are consistent with RANS calculations for

the plane strain case. We propose this expression for the Reynolds stress as a fully explicit, self-
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consistent algebraic model for complex ows. It is shown that the model expression captures the

equilibrium values of anisotropy quite accurately in basic three dimensional ows also. Further

validation and extensive testing in complex ows is currently underway.
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Figure 1: G(1)
, G(2)

, and G
(3)
1 as functions of �1 and �2

Figure 2: G1 as a function of �1 and �2

Figure 3: G2 as a function of �1 and �2

Figure 4: G3 as a function of �1 and �2

Figure 5: Comparison of model calculation and exact solution for homogeneous shear ow case.

Lines refer to model calculation and symbols represent exact solution. | b11, - - - b12, - { - b22,

and { { { b33.
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